Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(7): 4999-5005, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38601777

RESUMO

Isolated platinum(II) ions anchored at acid sites in the pores of zeolite HZSM-5, initially introduced by aqueous ion exchange, were reduced to form platinum nanoparticles that are stably dispersed with a narrow size distribution (1.3 ± 0.4 nm in average diameter). The nanoparticles were confined in reservoirs within the porous zeolite particles, as shown by electron beam tomography and the shape-selective catalysis of alkene hydrogenation. When the nanoparticles were oxidatively fragmented in dry air at elevated temperature, platinum returned to its initial in-pore atomically dispersed state with a charge of +2, as shown previously by X-ray absorption spectroscopy. The results determine the conditions under which platinum is retained within the pores of HZSM-5 particles during redox cycles that are characteristic of the reductive conditions of catalyst operation and the oxidative conditions of catalyst regeneration.

2.
J Phys Chem C Nanomater Interfaces ; 125(7): 4155-4174, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33841605

RESUMO

The separation of xylenes is one of the most important processes in the petrochemical industry. In this article, the competitive adsorption from a fluid-phase mixture of xylenes in zeolites is studied. Adsorption from both vapor and liquid phases is considered. Computations of adsorption of pure xylenes and a mixture of xylenes at chemical equilibrium in several zeolite types at 250 °C are performed by Monte Carlo simulations. It is observed that shape and size selectivity entropic effects are predominant for small one-dimensional systems. Entropic effects due to the efficient arrangement of xylenes become relevant for large one-dimensional systems. For zeolites with two intersecting channels, the selectivity is determined by a competition between enthalpic and entropic effects. Such effects are related to the orientation of the methyl groups of the xylenes. m-Xylene is preferentially adsorbed if xylenes fit tightly in the intersection of the channels. If the intersection is much larger than the adsorbed molecules, p-xylene is preferentially adsorbed. This study provides insight into how the zeolite topology can influence the competitive adsorption and selectivity of xylenes at reaction conditions. Different selectivities are observed when a vapor phase is adsorbed compared to the adsorption from a liquid phase. These insight have a direct impact on the design criteria for future applications of zeolites in the industry. MRE-type and AFI-type zeolites exclusively adsorb p-xylene and o-xylene from the mixture of xylenes in the liquid phase, respectively. These zeolite types show potential to be used as high-performing molecular sieves for xylene separation and catalysis.

3.
Science ; 367(6474): 193-197, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31919221

RESUMO

Selective partial oxidation of methane to methanol suffers from low efficiency. Here, we report a heterogeneous catalyst system for enhanced methanol productivity in methane oxidation by in situ generated hydrogen peroxide at mild temperature (70°C). The catalyst was synthesized by fixation of AuPd alloy nanoparticles within aluminosilicate zeolite crystals, followed by modification of the external surface of the zeolite with organosilanes. The silanes appear to allow diffusion of hydrogen, oxygen, and methane to the catalyst active sites, while confining the generated peroxide there to enhance its reaction probability. At 17.3% conversion of methane, methanol selectivity reached 92%, corresponding to methanol productivity up to 91.6 millimoles per gram of AuPd per hour.

4.
Chemistry ; 19(25): 8144-52, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23616246

RESUMO

An efficient catalytic system for Sonogashira-Hagihara-type reactions displaying ligand acceleration in the copper-catalyzed formation of C(sp²)-C(sp) bonds is described. The structure of the ligand plays a key role for the coupling efficiency. Various copper sources show excellent catalytic activity, even in sub-mol% quantities. A wide variety of substituents is tolerated in the substrates. Mechanistic details have been revealed by kinetic measurements and DFT calculations.

5.
Chemistry ; 16(45): 13487-99, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20931564

RESUMO

The mechanism of the ruthenium-catalyzed dehydrogenation of methanol has been investigated by using three DFT-based methods. Three pathways were considered in which the ruthenium catalyst was ligated by either two or three phosphine ligands. Dispersion interactions, which are not described by the popular B3LYP functional, were taken into account by using the dispersion-corrected B3LYP-D and M06 density functionals. These interactions were found to be important in the description of reaction steps that involved ligand/substrate/product association with or dissociation from the catalyst. In line with experimental results, the resting state of the catalyst was predicted to be a ruthenium trihydride complex. It is shown that the dehydrogenation reaction preferentially proceeds through pathways in which the catalyst is ligated by two phosphine ligands. The catalytic cycle of the dehydrogenation process involves an intermolecular proton transfer from the methanol substrate to the catalyst followed by the release of dihydrogen. Rate-determining ß-hydride elimination from the resulting methoxide species then regenerates the resting state of the catalyst and completes the catalytic cycle. The overall free-energy barriers of 29.6-31.4 kcal mol(-1) predicted by the three density functionals are in good agreement with the experimentally observed reaction rate of 6 h(-1) at 423 K.

8.
Dalton Trans ; 39(8): 1962-71, 2010 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-20148212

RESUMO

The reactions of phosphido complexes [Nb(eta(5)-C(5)H(4)SiMe(3))(2)(L)(PPh(2))] [L = CO (1), CNxylyl (2), CNCy (3)] with alkynes have been carried out. The new diphenylphosphinoalkenyl niobocene complexes [Nb(eta(5)-C(5)H(4)SiMe(3))(2)(eta(1)-C-C(CO(2)CH(3))=C(R)PPh(2))(CO)] [R = H (4), CH(3) (5)] and [Nb(eta(5)-C(5)H(4)SiMe(3))(2)(eta(1)-C-C(CO(2)R)=C(CO(2)R)PPh(2))(CO)] [R = CH(3), (6), R = (t)Bu, (7)] were successfully synthesized by the reaction of with methyl propiolate (HC[triple bond]CCO(2)CH(3)) or methyl 2-butynoate (CH(3)C[triple bond]CCO(2)CH(3)) and dimethyl 2-butynedioate [(CH(3) O(2)C)C[triple bond]C(CO(2)CH(3))] or di(tert-butyl) 2-butynedioate [((t)BuO(2)C)C[triple bond]C(CO(2)(t)Bu)], respectively. However, reaction was not observed with more electron-rich alkynes. Complex reacted with methyl propiolate, methyl 2-butynoate (MeC[triple bond]CCO(2)Me) or di(tert-butyl) 2-butynedioate to give surprising new heteroniobacycle complexes [Nb(eta(5)-C(5)H(4)SiMe(3))(2)(eta(1)-C-C(=NXylyl)C(R(1))=C(R(2))PPh(2)-kappa(1)-P)] [R(1) = H, R(2) = CO(2)Me (8); R(1) = Me, R(2) = CO(2)Me (9); R(1) = CO(2)(t)Bu, R(2) = CO(2)(t)Bu (10)]. Finally, the phosphido complexes and reacted with phenylacetylene (PhC[triple bond]CH) to give new diphenylphosphinoalkenyl niobocene derivatives [Nb(eta(5)-C(5)H(4)SiMe(3))(2)(eta(1)-C-C(C(6)H(5))=C(H)PPh(2))(CNR)] [R = xylyl (11), Cy (12)]. All of these compounds were characterized by NMR spectroscopy and the molecular structure of was determined by single-crystal X-ray diffraction studies. Theoretical studies were also carried out by means of density functional theory (DFT) calculations on the insertions of alkynes into the Nb-P bond in the phosphido niobocenes.

9.
Chemistry ; 14(24): 7285-95, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18618536

RESUMO

We describe herein a detailed study of the inclusion processes of several positively charged organometallic sandwich complexes inside the aromatic cavity of the self-folding octaamide cavitand 1. In all cases, the binding process produces aggregates with a simple 1:1 stoichiometry. The resulting inclusion complexes are not only thermodynamically stable, but also kinetically stable on the (1)H NMR spectroscopy timescale. The binding constants for the inclusion complexes were determined by different titration techniques. We have also investigated the kinetics of the binding process and the motion of the metallocenes included in the aromatic cavity of the host. Using DFT-based calculations, we have evaluated the energies of a diverse range of potential binding geometries for the complexes. We then computed the proton chemical shifts of the included guest in each one of the binding geometries. The agreement between the averaged computed values and the experimentally determined chemical shifts clearly supports the proposed binding geometries that we assigned to the inclusion complexes formed in solution. The combination of experimental and theoretical results has allowed us to elucidate the origins of the distinct features detected in the complexation process of the different guests, as well as their different motions inside the host.

10.
Chemistry ; 14(6): 1843-53, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18061923

RESUMO

The rate-determining step in the hydroformylation of 1-octene, catalysed by the rhodium-Xantphos catalyst system, was determined by using a combination of experimentally determined (1)H/(2)H and (12)C/(13)C kinetic isotope effects and a theoretical approach. From the rates of hydroformylation and deuterioformylation, a small (1)H/(2)H isotope effect of 1.2 was determined for the hydride moiety of the rhodium catalyst. (12)C/(13)C isotope effects of 1.012(1) and 1.012(3) for the alpha-carbon and beta-carbon atoms of 1-octene were determined, respectively. Both quantum mechanics/molecular mechanics (QM/MM) and full quantum mechanics calculations were carried out on the key catalytic steps, for "real-world" ligand systems, to clarify whether alkene coordination or hydride migration is the rate-determining step. Our calculations (21.4 kcal mol(-1)) quantitatively reproduce the experimental energy barrier for CO dissociation (20.1 kcal mol(-1)) starting at the (bisphosphane)RhH(CO)(2) resting state. The barrier for hydride migration lies 3.8 kcal mol(-1) higher than the barrier for CO dissociation (experimentally determined trend approximately 3 kcal mol(-1)). The computed (1)H/(2)H and (12)C/(13)C kinetic isotope effects corroborate the results of the energy analysis.

11.
J Am Chem Soc ; 129(13): 3989-4000, 2007 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-17348651

RESUMO

The origin of the chemoselectivity of palladium catalysts containing bidentate phosphine ligands toward either methoxycarbonylation of ethene or the copolymerization of ethene and carbon monoxide was investigated using density functional theory based calculations. For a palladium catalyst containing the electron-donating bis(dimethylphosphino)ethane (dmpe) ligand, the rate determining step for chain propagation is shown to be the insertion of ethene into the metal-acyl bond. The high barrier for chain propagation is attributed to the low stability of the ethene intermediate, (dmpe)Pd(ethene)(C(O)CH3). For the competing methanolysis process, the most likely pathway involves the formation of (dmpe)Pd(CH3OH)(C(O)CH3) via dissociative ligand exchange, followed by a solvent mediated proton-transfer/reductive- elimination process. The overall barrier for this process is higher than the barrier for ethene insertion into the palladium-acetyl bond, in line with the experimentally observed preference of this type of catalyst toward the formation of polyketone. Electronic bite angle effects on the rates of ethene insertion and ethanoyl methanolysis were evaluated using four electronically and sterically related ligands (Me)2P(CH2)nP(Me)2 (n = 1-4). Steric effects were studied for larger tert-butyl substituted ligands using a QM/MM methodology. The results show that ethene coordination to the metal center and subsequent insertion into the palladium-ethanoyl bond are disfavored by the addition of steric bulk around the metal center. Key intermediates in the methanolysis mechanism, on the other hand, are stabilized because of electronic effects caused by increasing the bite angle of the diphosphine ligand. The combined effects explain successfully which ligands give polymer and which ones give methyl propionate as the major products of the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...